Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Aquabis(5-chlorosalicylato- κO)(1,10phenanthroline- $\kappa^2 N, N'$ zinc(II)

Decai Wen^a* and Shaoming Ying^b

^aDepartment of Chemistry, Longyan University, Longyan, Fujian 364000, People's Republic of China, and ^bDepartment of Chemistry, JingGangShan College, Ji'an, Jiangxi 343009, People's Republic of China Correspondence e-mail: wendecai1227@yahoo.com.cn

Received 26 July 2007; accepted 19 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.036; wR factor = 0.084; data-to-parameter ratio = 15.6.

In the title complex, $[Zn(C_7H_4ClO_3)_2(C_{12}H_8N_2)(H_2O)]$, the Zn atom is coordinated by two 5-chlorosalicylate anions, one 1,10-phenanthroline molecule and one water molecule, displaying a distorted trigonal-bipyramidal geometry. The crystal structure is stabilized by intra- and intermolecular O- $H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Brownless et al. (1999); Lemoine et al. (2002, 2004); Melnik et al. (2001); Sun et al. (2001); Wen et al. (2007a,b,c); Yin et al. (2004); Zhu et al. (2003).

Experimental

Crystal data

[Zn(C₇H₄ClO₃)₂(C₁₂H₈N₂)(H₂O)] $M_{\star} = 606.69$ Triclinic, P1 a = 8.681 (4) Å b = 11.777 (6) Å c = 12.982 (9) Å $\alpha = 72.06(2)^{\circ}$ $\beta = 76.98 (2)^{\circ}$

 $\gamma = 81.592 \ (19)^{\circ}$ V = 1225.9 (12) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.27 \text{ mm}^{-1}$ T = 293 (2) K $0.28 \times 0.26 \times 0.25$ mm $R_{\rm int} = 0.049$

5553 independent reflections

4462 reflections with $I > 2\sigma(I)$

Data collection

Rigaku R-AXIS RAPID Weissenberg IP diffractometer Absorption correction: none 12131 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.084$	independent and constrained
S = 1.04	refinement
5553 reflections	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
355 parameters	$\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$
4 restraints	

Table 1

Selected geometric parameters (Å, °).

Zn1-O1	1.9706 (18)	Zn1-O7	2.1154 (17)
Zn1-O4	2.0094 (17)	Zn1-N2	2.1599 (18)
Zn1-N1	2.099 (2)		
O1-Zn1-O4	123.68 (8)	N1-Zn1-O7	89.25 (7)
D1-Zn1-N1	98.46 (8)	O1-Zn1-N2	96.73 (8)
D4-Zn1-N1	137.84 (7)	O4-Zn1-N2	94.37 (7)
O1-Zn1-O7	94.31 (8)	N1-Zn1-N2	78.09 (8)
04 - Zn1 - 07	88.75 (7)	O7-Zn1-N2	164.28 (7)

Table 2

Hydrogen-bond	geometry ((A, °]).
---------------	------------	--------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} 03 - H3A \cdots O2 \\ 06 - H6A \cdots O5 \\ 07 - H7A \cdots O4^{i} \\ 07 - H7B \cdots O2^{i} \end{array}$	0.85 (1) 0.85 (1) 0.85 (1) 0.84 (1)	1.78 (2) 1.80 (2) 1.97 (1) 1.84 (1)	2.552 (3) 2.577 (3) 2.785 (3) 2.672 (3)	151 (2) 150 (2) 162 (3) 171 (2)

Symmetry code: (i) -x + 1, -y + 2, -z + 2.

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

This work was supported financially by the Education Department of Fujian Province (No. JA02261) and Longvan Science & Technology Bureau (No. 2003LY03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2150).

References

- Brownless, N. J., Edwards, D. A. & Mahon, M. F. (1999). Inorg. Chim. Acta, 287, 89-94.
- Lemoine, P., Viossat, B., Dung, N. H., Tomas, A., Morgant, G., Greenaway, F. T. & Sorenson, J. R. J. (2004). J. Inorg. Biochem. 98, 1734-1749.
- Lemoine, P., Viossat, B., Morgant, G., Greenaway, F. T., Tomas, A., Dung, N.-H. & Sorenson, J. R. J. (2002). J. Inorg. Biochem. 89, 18-28.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- Melnik, M., Koman, M., Moncol, J. & Glowiak, T. (2001). J. Coord. Chem. 53, 173-177.
- Molecular Structure Corporation (1999). TEXRAY (Version 1.10) and TEXSAN (Version 1.10). MSC, The Woodlands, Texas, USA.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, D.-F., Cao, R., Liang, Y.-C., Shi, Q., Su, W.-P. & Hong, M.-C. (2001). J. Chem. Soc. Dalton Trans. pp. 2335-2340.
- Wen, D.-C., Liu, S.-X. & Lin, M. (2007a). J. Mol. Struct. doi:10.1016/ j.molstruc.2007.06.03.
- Wen, D.-C., Liu, S.-X. & Ribas, J. (2007*b*). *Inorg. Chem. Commun.* **10**, 661–665. Wen, D.-C., Liu, S.-X. & Ribas, J. (2007*c*). *Polyhedron*, **26**, 3849–3856.
- Yin, M.-C., Yuan, L.-J., Ai, C.-C., Wang, C.-W., Yuan, E.-T. & Sun, J.-T. (2004). Polyhedron, 23, 529-536.
- Zhu, L.-G., Kitagawa, S., Miyasaka, H. & Chang, H.-C. (2003). Inorg. Chim. Acta, 355, 121-126.

Acta Cryst. (2007). E63, m2407-m2408 [doi:10.1107/S1600536807040937]

Aquabis(5-chlorosalicylato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')zinc(II)

D. Wen and S. Ying

Comment

A lot of attention has been paid to the metal salicylate owing to their intriguing structural features (Brownless *et al.*, 1999; Lemoine *et al.*, 2002; Zhu *et al.*, 2003; Yin *et al.*, 2004; Wen *et al.*, 2007*a*,b,c) and biological applications (Lemoine *et al.*, 2004). We report here the structure of a Zn (II) complex with 5-chloroosalicylate ligand (Melnik *et al.*, 2001). The title complex, $Zn(C_7H_4ClO_3)_2(C_{12}H_8N_2)(H_2O)$ was synthesized under hydrothermal conditions. The Zn atom is coordinated in a distorted trigonal bipyramid geometry by two O atoms from two 5-chlorosalicylate ligands, two N atoms from one 1,10-phenanthroline and one water O atom (Fig. 1). One Zn—N bond is significantly shorter than the other (Zn1—N1 = 2.099 (2) Å, Zn1—N2 = 2.160 (2) Å). These distances are comparable to the Zn—N bond lengths (Zn—N1 = 2.109 (3) Å, Zn—N2 = 2.178 (3) Å) in [Zn(ta)(phen)(H₂O)]_n (Sun *et al.*, 2001). The crystal structure is stabilized by intra- and intermolecular O—H···O hydrogen bonds interactions (Fig. 3).

Experimental

A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (0.1 mmol), phen (0.1 mmol), 5-chlorosalicylic acid (0.2 mmol) and distilled water (10 ml) was put into a Teflon-lined autoclave (20 ml) and then heated at 413 K for 72 h. Colorless block-like crystals suitable for X-ray analysis were collected from the reaction mixture.

Refinement

The aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation $[C-H = 0.93 \text{ Å} \text{ and } U_{iso}(H) = 1.2 U_{eq}(C)]$. The water H atoms were found in a difference Fourier map and were refined with distance restraints of O-H = 0.85 (1)Å and $U_{iso}(H) = 1.2 U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title complex with 30% probability ellipsoids.

Fig. 2. Representation of hydrogen bonds (dashed lines) observed in the title compound.

Fig. 3. Packing diagram of the title compound viewed down the *a* axis. Hydrogen bonds are represented by dashed lines.

Aquabis(5-chlorosalicylato- κO)(1,10-phenanthroline- $\kappa^2 N$,N')zinc(II)

Crystal data	
[Zn(C7H4ClO3)2(C12H8N2)(H2O)]	Z = 2
$M_r = 606.69$	$F_{000} = 616$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.644 {\rm Mg m}^{-3}$
a = 8.681 (4) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
b = 11.777 (6) Å	Cell parameters from 5553 reflections
c = 12.982 (9) Å	$\theta = 3.2 - 27.5^{\circ}$
$\alpha = 72.06 \ (2)^{\circ}$	$\mu = 1.27 \text{ mm}^{-1}$
$\beta = 76.98 \ (2)^{\circ}$	T = 293 (2) K
$\gamma = 81.592 \ (19)^{\circ}$	Block, colourless
$V = 1225.9 (12) \text{ Å}^3$	$0.28\times0.26\times0.25~mm$

Data collection

Rigaku R-AXIS RAPID Weissenberg IP diffractometer	4462 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.049$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -11 \rightarrow 9$
Absorption correction: none	$k = -15 \rightarrow 14$
12131 measured reflections	$l = -16 \rightarrow 16$
5553 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of

	1
$wR(F^2) = 0.084$	$w = 1/[\sigma^2(F_o^2) + (0.0162P)^2 + 0.2964P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.002$
5553 reflections	$\Delta \rho_{max} = 0.54 \text{ e} \text{ Å}^{-3}$
355 parameters	$\Delta \rho_{min} = -0.44 \text{ e } \text{\AA}^{-3}$
4 restraints	Extinction correction: none

independent and constrained refinement

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.64074 (3)	0.98442 (2)	0.813250 (19)	0.03415 (9)
N1	0.5901 (2)	1.07549 (15)	0.65649 (14)	0.0353 (4)
N2	0.8038 (2)	0.88896 (14)	0.71017 (14)	0.0333 (4)
01	0.7926 (2)	1.09096 (14)	0.81791 (15)	0.0494 (4)
O2	0.7919 (2)	1.05973 (15)	0.99631 (15)	0.0510 (4)
O3	0.9882 (2)	1.15930 (17)	1.05330 (15)	0.0578 (5)
H3A	0.917 (2)	1.115 (2)	1.058 (3)	0.069*
O4	0.57974 (18)	0.83560 (12)	0.93499 (11)	0.0373 (3)
O5	0.4509 (2)	0.80266 (16)	0.81983 (14)	0.0563 (5)
O6	0.2744 (3)	0.6264 (2)	0.8834 (2)	0.0726 (6)
H6A	0.317 (4)	0.6903 (18)	0.843 (3)	0.087*
C1	0.9516 (2)	1.20453 (18)	0.86614 (18)	0.0348 (5)
C2	1.0224 (3)	1.2225 (2)	0.9464 (2)	0.0418 (5)
C3	1.1299 (3)	1.3083 (2)	0.9158 (2)	0.0527 (6)
Н3	1.1788	1.3186	0.9688	0.063*
C4	1.1657 (3)	1.3782 (2)	0.8093 (3)	0.0540 (7)
H4	1.2380	1.4358	0.7900	0.065*
C5	1.0934 (3)	1.3625 (2)	0.7307 (2)	0.0423 (5)
C6	0.9881 (3)	1.27671 (19)	0.75859 (19)	0.0385 (5)
H6	0.9407	1.2669	0.7047	0.046*
C7	0.8372 (2)	1.11091 (19)	0.8966 (2)	0.0380 (5)
C8	0.4146 (2)	0.67431 (18)	1.00260 (18)	0.0359 (5)
C9	0.3112 (3)	0.6059 (2)	0.9838 (2)	0.0502 (6)

C10	0.2413 (3)	0.5146 (2)	1.0708 (3)	0.0643 (8)
H10	0.1718	0.4693	1.0586	0.077*
C11	0.2734 (3)	0.4907 (2)	1.1739 (3)	0.0660 (9)
H11	0.2261	0.4293	1.2315	0.079*
C12	0.3758 (3)	0.5577 (2)	1.1922 (2)	0.0522 (7)
C13	0.4467 (3)	0.64840 (19)	1.10822 (18)	0.0400 (5)
H13	0.5164	0.6926	1.1218	0.048*
C14	0.4861 (2)	0.77654 (18)	0.91259 (17)	0.0356 (5)
C15	0.4887 (3)	1.1706 (2)	0.63063 (19)	0.0463 (6)
H15	0.4287	1.2009	0.6868	0.056*
C16	0.4683 (3)	1.2270 (2)	0.5230 (2)	0.0529 (6)
H16	0.3968	1.2942	0.5080	0.064*
C17	0.5538 (3)	1.1834 (2)	0.4396 (2)	0.0501 (6)
H17	0.5398	1.2196	0.3674	0.060*
C18	0.6633 (3)	1.0831 (2)	0.46356 (18)	0.0400 (5)
C19	0.7607 (3)	1.0325 (2)	0.38123 (19)	0.0489 (6)
H19	0.7508	1.0655	0.3078	0.059*
C20	0.8664 (3)	0.9377 (2)	0.40863 (19)	0.0497 (6)
H20	0.9288	0.9068	0.3536	0.060*
C21	0.8846 (3)	0.8841 (2)	0.52007 (18)	0.0403 (5)
C22	0.9915 (3)	0.7849 (2)	0.5542 (2)	0.0495 (6)
H22	1.0534	0.7483	0.5030	0.059*
C23	1.0045 (3)	0.7421 (2)	0.6625 (2)	0.0481 (6)
H23	1.0762	0.6771	0.6854	0.058*
C24	0.9086 (3)	0.79723 (19)	0.73877 (19)	0.0408 (5)
H24	0.9190	0.7683	0.8123	0.049*
C25	0.7908 (2)	0.93152 (17)	0.60344 (17)	0.0324 (4)
C26	0.6781 (2)	1.03261 (18)	0.57349 (17)	0.0331 (4)
Cl1	1.13591 (10)	1.45253 (6)	0.59530 (6)	0.0686 (2)
Cl2	0.41211 (12)	0.52968 (9)	1.32473 (7)	0.0937 (3)
O7	0.4401 (2)	1.07947 (14)	0.88416 (13)	0.0429 (4)
H7B	0.364 (2)	1.0363 (18)	0.915 (2)	0.051*
H7A	0.455 (3)	1.108 (2)	0.9330 (17)	0.051*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.04762 (15)	0.03512 (13)	0.01979 (12)	-0.01181 (11)	-0.00212 (10)	-0.00721 (9)
N1	0.0421 (9)	0.0392 (9)	0.0238 (9)	-0.0076 (9)	-0.0023 (7)	-0.0088 (7)
N2	0.0397 (9)	0.0355 (9)	0.0251 (9)	-0.0125 (8)	-0.0022 (7)	-0.0080 (7)
01	0.0595 (10)	0.0475 (9)	0.0518 (11)	-0.0156 (8)	-0.0167 (8)	-0.0198 (8)
O2	0.0553 (10)	0.0515 (9)	0.0451 (11)	-0.0131 (8)	0.0009 (8)	-0.0158 (8)
O3	0.0748 (13)	0.0657 (11)	0.0397 (10)	-0.0093 (10)	-0.0192 (9)	-0.0176 (9)
O4	0.0483 (8)	0.0349 (7)	0.0252 (8)	-0.0110 (7)	-0.0010 (6)	-0.0045 (6)
O5	0.0710 (11)	0.0678 (11)	0.0312 (9)	-0.0140 (10)	-0.0138 (8)	-0.0091 (8)
O6	0.0778 (14)	0.0823 (14)	0.0773 (17)	-0.0227 (12)	-0.0165 (12)	-0.0426 (13)
C1	0.0333 (10)	0.0362 (10)	0.0398 (12)	0.0021 (10)	-0.0085 (9)	-0.0189 (9)
C2	0.0433 (12)	0.0470 (12)	0.0422 (13)	0.0039 (11)	-0.0148 (10)	-0.0214 (10)

C3	0.0488 (13)	0.0626 (15)	0.0601 (18)	-0.0070 (13)	-0.0238 (13)	-0.0262 (13)
C4	0.0394 (12)	0.0540 (15)	0.075 (2)	-0.0095 (12)	-0.0121 (13)	-0.0238 (14)
C5	0.0390 (11)	0.0421 (11)	0.0443 (14)	-0.0016 (11)	-0.0036 (10)	-0.0140 (10)
C6	0.0407 (11)	0.0408 (11)	0.0390 (13)	0.0030 (10)	-0.0111 (10)	-0.0191 (9)
C7	0.0369 (11)	0.0359 (11)	0.0447 (13)	0.0020 (10)	-0.0072 (10)	-0.0193 (10)
C8	0.0355 (10)	0.0312 (10)	0.0383 (12)	-0.0037 (9)	0.0003 (9)	-0.0108 (9)
С9	0.0462 (13)	0.0470 (13)	0.0644 (18)	-0.0048 (12)	-0.0034 (12)	-0.0308 (12)
C10	0.0592 (16)	0.0442 (14)	0.092 (2)	-0.0211 (13)	0.0075 (16)	-0.0305 (15)
C11	0.0615 (17)	0.0361 (12)	0.080 (2)	-0.0152 (13)	0.0175 (16)	-0.0048 (13)
C12	0.0478 (13)	0.0418 (12)	0.0498 (16)	-0.0025 (12)	0.0020 (12)	0.0030 (11)
C13	0.0378 (11)	0.0344 (10)	0.0391 (13)	-0.0056 (10)	-0.0013 (10)	-0.0010 (9)
C14	0.0403 (11)	0.0352 (10)	0.0278 (11)	-0.0007 (10)	0.0006 (9)	-0.0101 (8)
C15	0.0538 (14)	0.0479 (13)	0.0333 (13)	-0.0008 (12)	-0.0040 (11)	-0.0106 (10)
C16	0.0602 (15)	0.0522 (13)	0.0382 (14)	0.0050 (13)	-0.0103 (12)	-0.0049 (11)
C17	0.0609 (15)	0.0576 (14)	0.0280 (12)	-0.0115 (13)	-0.0120 (11)	-0.0013 (10)
C18	0.0502 (12)	0.0466 (12)	0.0243 (11)	-0.0162 (11)	-0.0030 (9)	-0.0090 (9)
C19	0.0664 (15)	0.0598 (14)	0.0225 (11)	-0.0184 (14)	-0.0031 (11)	-0.0123 (10)
C20	0.0644 (15)	0.0596 (14)	0.0286 (12)	-0.0140 (14)	0.0037 (11)	-0.0228 (11)
C21	0.0490 (12)	0.0443 (12)	0.0314 (12)	-0.0130 (11)	0.0007 (10)	-0.0179 (9)
C22	0.0536 (14)	0.0497 (13)	0.0484 (15)	-0.0070 (12)	0.0026 (12)	-0.0265 (11)
C23	0.0503 (13)	0.0420 (12)	0.0535 (16)	-0.0020 (12)	-0.0094 (12)	-0.0170 (11)
C24	0.0477 (12)	0.0376 (11)	0.0373 (13)	-0.0105 (11)	-0.0076 (10)	-0.0081 (9)
C25	0.0376 (10)	0.0357 (10)	0.0261 (10)	-0.0160 (9)	0.0004 (8)	-0.0110 (8)
C26	0.0401 (11)	0.0382 (10)	0.0228 (10)	-0.0163 (10)	-0.0012 (8)	-0.0089 (8)
Cl1	0.0842 (5)	0.0558 (4)	0.0535 (4)	-0.0097 (4)	0.0007 (4)	-0.0062 (3)
Cl2	0.1015 (6)	0.1024 (6)	0.0450 (4)	-0.0271 (5)	-0.0060 (4)	0.0281 (4)
07	0.0572 (10)	0.0429 (8)	0.0263 (8)	-0.0089 (8)	0.0018 (7)	-0.0116 (6)

Geometric parameters (Å, °)

Zn1—O1	1.9706 (18)	C9—C10	1.390 (4)
Zn1—O4	2.0094 (17)	C10-C11	1.364 (5)
Zn1—N1	2.099 (2)	С10—Н10	0.9300
Zn1—07	2.1154 (17)	C11—C12	1.373 (4)
Zn1—N2	2.1599 (18)	C11—H11	0.9300
N1—C15	1.325 (3)	C12—C13	1.372 (3)
N1—C26	1.361 (3)	C12—Cl2	1.741 (3)
N2—C24	1.323 (3)	С13—Н13	0.9300
N2—C25	1.345 (3)	C15—C16	1.389 (3)
O1—C7	1.265 (3)	С15—Н15	0.9300
O2—C7	1.247 (3)	C16—C17	1.363 (3)
O3—C2	1.346 (3)	С16—Н16	0.9300
O3—H3A	0.847 (10)	C17—C18	1.404 (3)
O4—C14	1.275 (3)	С17—Н17	0.9300
O5—C14	1.244 (3)	C18—C26	1.395 (3)
O6—C9	1.354 (4)	C18—C19	1.432 (3)
O6—H6A	0.854 (10)	C19—C20	1.348 (3)
C1—C6	1.386 (3)	С19—Н19	0.9300
C1—C2	1.404 (3)	C20—C21	1.424 (3)

C1—C7	1.494 (3)	C20—H20	0.9300
C2—C3	1.383 (4)	C21—C22	1.404 (3)
C3—C4	1.366 (4)	C21—C25	1.410 (3)
С3—Н3	0.9300	C22—C23	1.365 (4)
C4—C5	1.382 (4)	C22—H22	0.9300
C4—H4	0.9300	C23—C24	1.400 (3)
C5—C6	1.372 (3)	С23—Н23	0.9300
C5—C11	1.738 (3)	C24—H24	0.9300
С6—Н6	0.9300	C25—C26	1.439 (3)
C8—C13	1.393 (3)	O7—H7B	0.844 (10)
C8—C9	1.395 (3)	O7—H7A	0.847 (10)
C8—C14	1.492 (3)		
O1—Zn1—O4	123.68 (8)	C10-C11-H11	120.2
O1—Zn1—N1	98.46 (8)	C12—C11—H11	120.2
O4—Zn1—N1	137.84 (7)	C13—C12—C11	121.0 (3)
O1—Zn1—O7	94.31 (8)	C13—C12—Cl2	119.5 (2)
O4—Zn1—O7	88.75 (7)	C11—C12—Cl2	119.5 (2)
N1—Zn1—O7	89.25 (7)	C12—C13—C8	120.1 (2)
O1—Zn1—N2	96.73 (8)	С12—С13—Н13	120.0
O4—Zn1—N2	94.37 (7)	C8—C13—H13	120.0
N1—Zn1—N2	78.09 (8)	O5—C14—O4	122.4 (2)
O7—Zn1—N2	164.28 (7)	O5—C14—C8	119.6 (2)
C15—N1—C26	118.14 (19)	O4—C14—C8	117.99 (19)
C15—N1—Zn1	127.30 (15)	N1—C15—C16	122.7 (2)
C26—N1—Zn1	114.49 (14)	N1—C15—H15	118.6
C24—N2—C25	118.49 (18)	С16—С15—Н15	118.6
C24—N2—Zn1	128.86 (15)	C17—C16—C15	119.6 (2)
C25—N2—Zn1	112.65 (13)	C17—C16—H16	120.2
C7—O1—Zn1	132.72 (17)	C15—C16—H16	120.2
С2—О3—НЗА	106 (2)	C16—C17—C18	119.4 (2)
C14—O4—Zn1	113.35 (13)	С16—С17—Н17	120.3
С9—О6—Н6А	106 (3)	С18—С17—Н17	120.3
C6—C1—C2	118.6 (2)	C26—C18—C17	117.4 (2)
C6—C1—C7	120.8 (2)	C26—C18—C19	119.1 (2)
C2—C1—C7	120.6 (2)	C17—C18—C19	123.4 (2)
O3—C2—C3	118.3 (2)	C20-C19-C18	120.9 (2)
O3—C2—C1	122.1 (2)	С20—С19—Н19	119.5
C3—C2—C1	119.5 (2)	C18—C19—H19	119.5
C4—C3—C2	121.2 (2)	C19—C20—C21	121.4 (2)
С4—С3—Н3	119.4	С19—С20—Н20	119.3
С2—С3—Н3	119.4	C21—C20—H20	119.3
C3—C4—C5	119.3 (3)	C22—C21—C25	116.4 (2)
C3—C4—H4	120.3	C22—C21—C20	124.2 (2)
C5—C4—H4	120.3	C25—C21—C20	119.3 (2)
C6—C5—C4	120.5 (2)	C23—C22—C21	120.1 (2)
C6—C5—C11	119.76 (19)	C23—C22—H22	120.0
C4—C5—Cl1	119.7 (2)	C21—C22—H22	120.0
C5—C6—C1	120.8 (2)	C22—C23—C24	119.2 (2)
С5—С6—Н6	119.6	C22—C23—H23	120.4

С1—С6—Н6	119.6	С24—С23—Н23	120.4
O2—C7—O1	125.1 (2)	N2—C24—C23	122.5 (2)
O2—C7—C1	118.2 (2)	N2-C24-H24	118.7
O1—C7—C1	116.7 (2)	C23—C24—H24	118.7
C13—C8—C9	119.0 (2)	N2-C25-C21	123.3 (2)
C13—C8—C14	120.0 (2)	N2-C25-C26	117.74 (17)
C9—C8—C14	121.0 (2)	C21—C25—C26	118.9 (2)
O6—C9—C10	118.5 (3)	N1-C26-C18	122.7 (2)
O6—C9—C8	122.1 (2)	N1-C26-C25	116.99 (19)
C10—C9—C8	119.4 (3)	C18—C26—C25	120.32 (18)
С11—С10—С9	120.9 (3)	Zn1—O7—H7B	112.3 (16)
C11—C10—H10	119.6	Zn1—O7—H7A	115.6 (17)
C9—C10—H10	119.6	H7B—O7—H7A	105 (3)
C10-C11-C12	119.6 (3)		
O1—Zn1—N1—C15	-81.8 (2)	C10—C11—C12—C13	-0.1(4)
O4—Zn1—N1—C15	99.7 (2)	C10-C11-C12-Cl2	178.2 (2)
O7—Zn1—N1—C15	12.4 (2)	C11—C12—C13—C8	0.4 (3)
N2—Zn1—N1—C15	-177.0(2)	Cl2—C12—C13—C8	-177.89 (16)
O1—Zn1—N1—C26	95.23 (15)	C9—C8—C13—C12	-0.8 (3)
O4—Zn1—N1—C26	-83.21 (17)	C14—C8—C13—C12	177.21 (19)
07—Zn1—N1—C26	-170.52(15)	Zn1—O4—C14—O5	7.2 (2)
N2—Zn1—N1—C26	0.08 (14)	Zn1—O4—C14—C8	-171.40(13)
O1—Zn1—N2—C24	82.48 (19)	C13—C8—C14—O5	-176.59 (19)
O4—Zn1—N2—C24	-42.21 (19)	C9—C8—C14—O5	1.3 (3)
N1—Zn1—N2—C24	179.75 (19)	C13—C8—C14—O4	2.1 (3)
07—Zn1—N2—C24	-143.2 (2)	C9—C8—C14—O4	-179.99 (17)
O1—Zn1—N2—C25	-98.22 (15)	C26—N1—C15—C16	0.5 (4)
O4—Zn1—N2—C25	137.10 (14)	Zn1—N1—C15—C16	177.5 (2)
N1—Zn1—N2—C25	-0.95 (14)	N1—C15—C16—C17	0.7 (4)
07—Zn1—N2—C25	36.1 (3)	C15—C16—C17—C18	-1.1 (4)
O4—Zn1—O1—C7	-24.4 (2)	C16—C17—C18—C26	0.3 (4)
N1—Zn1—O1—C7	156.85 (18)	C16—C17—C18—C19	-178.7 (2)
O7—Zn1—O1—C7	66.96 (19)	C26—C18—C19—C20	-0.4 (4)
N2—Zn1—O1—C7	-124.25 (19)	C17—C18—C19—C20	178.5 (2)
O1—Zn1—O4—C14	-176.53 (12)	C18—C19—C20—C21	0.4 (4)
N1—Zn1—O4—C14	1.62 (17)	C19—C20—C21—C22	179.5 (2)
O7—Zn1—O4—C14	89.13 (14)	C19—C20—C21—C25	-0.4 (4)
N2—Zn1—O4—C14	-75.44 (14)	C25—C21—C22—C23	-2.3 (3)
C6—C1—C2—O3	177.31 (19)	C20—C21—C22—C23	177.7 (2)
C7—C1—C2—O3	-1.7 (3)	C21—C22—C23—C24	0.9 (4)
C6—C1—C2—C3	-2.1 (3)	C25—N2—C24—C23	-0.9 (3)
C7—C1—C2—C3	178.89 (19)	Zn1—N2—C24—C23	178.34 (17)
O3—C2—C3—C4	-177.8 (2)	C22—C23—C24—N2	0.8 (4)
C1—C2—C3—C4	1.7 (3)	C24—N2—C25—C21	-0.7 (3)
C2—C3—C4—C5	-0.2 (4)	Zn1—N2—C25—C21	179.95 (16)
C3—C4—C5—C6	-0.7 (3)	C24—N2—C25—C26	-178.95 (18)
C3—C4—C5—Cl1	179.04 (18)	Zn1—N2—C25—C26	1.7 (2)
C4—C5—C6—C1	0.3 (3)	C22—C21—C25—N2	2.3 (3)
Cl1—C5—C6—C1	-179.52 (15)	C20—C21—C25—N2	-177.8 (2)

C2-C1-C6-C5	1.2 (3)	C22—C21—C25—C26	-179.5 (2)
C7—C1—C6—C5	-179.84 (17)	C20-C21-C25-C26	0.5 (3)
Zn1—O1—C7—O2	2.0 (3)	C15—N1—C26—C18	-1.4 (3)
Zn1—O1—C7—C1	-177.15 (13)	Zn1-N1-C26-C18	-178.73 (17)
C6—C1—C7—O2	-170.38 (18)	C15—N1—C26—C25	178.12 (19)
C2—C1—C7—O2	8.6 (3)	Zn1-N1-C26-C25	0.8 (2)
C6—C1—C7—O1	8.9 (3)	C17—C18—C26—N1	1.0 (3)
C2-C1-C7-01	-172.16 (18)	C19—C18—C26—N1	180.0 (2)
C13—C8—C9—O6	179.8 (2)	C17—C18—C26—C25	-178.5 (2)
C14—C8—C9—O6	1.9 (3)	C19—C18—C26—C25	0.5 (3)
C13—C8—C9—C10	0.8 (3)	N2-C25-C26-N1	-1.7 (3)
C14—C8—C9—C10	-177.2 (2)	C21—C25—C26—N1	179.96 (19)
O6—C9—C10—C11	-179.5 (2)	N2-C25-C26-C18	177.8 (2)
C8—C9—C10—C11	-0.5 (4)	C21-C25-C26-C18	-0.5 (3)
C9—C10—C11—C12	0.1 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3A…O2	0.85 (1)	1.78 (2)	2.552 (3)	151 (2)
O6—H6A…O5	0.85 (1)	1.80 (2)	2.577 (3)	150 (2)
O7—H7A···O4 ⁱ	0.85 (1)	1.97 (1)	2.785 (3)	162 (3)
O7—H7B···O2 ⁱ	0.84 (1)	1.84 (1)	2.672 (3)	171 (2)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+2$.				

Fig. 3